EXERCISES [MAI 5.17]

KINEMATICS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) (i) $v=\frac{d s}{d t}=12-3 t^{2}$. (ii) For $t=1, v=9 \mathrm{~ms}^{-1}$
(b) (i) $a=\frac{d v}{d t}=-6 t$. (ii) For $t=1, a=-6 m s^{-2}$
(c) (i) $v=-15 \Leftrightarrow 12-3 t^{2}=-15 \Leftrightarrow 3 t^{2}=27 \Leftrightarrow t^{2}=9 \Leftrightarrow t=3 \mathrm{sec}$
(ii) Stationary $\Rightarrow v=0 \Leftrightarrow 3 t^{2}-12=0 \Leftrightarrow t^{2}=4 \Leftrightarrow t=2 \mathrm{sec}$
(iii) At point $\mathrm{A} \Rightarrow s=0 \Leftrightarrow 12 t-t^{3}=0 \Leftrightarrow t\left(12-t^{2}\right) \Leftrightarrow t=0$ or $t=\sqrt{12}=2 \sqrt{3} \mathrm{sec}$
2. (a) $v=\int a d t=-3 t^{2}+c$

When $t=0, v=12 \Rightarrow 0+c=12 \Leftrightarrow c=12$. Hence, $v=-3 t^{2}+12$
(b) $s=\int v d t=-t^{3}+12 t+c$

When $t=0, s=0 \Rightarrow 0+c=0 \Leftrightarrow c=0$. Hence, $s=-t^{3}+12 t$
(c) Maximum displacement $\Rightarrow \frac{d s}{d t}=0 \Rightarrow v=0$ (car stationary)
$v=0 \Leftrightarrow 3 t^{2}-12=0 \Leftrightarrow t^{2}=4 \Leftrightarrow t=2 \mathrm{sec}$
Then $s=-2^{3}+12 \times 2=16 \mathrm{~m}$
(d) $v=-3 t^{2}+12>0 \Leftrightarrow 12>3 t^{2} \Leftrightarrow t^{2}<4 \Leftrightarrow 0<t<2$
(e) $s=-t^{3}+12 t>0$. By observing the corresponding graph $0<t<2 \sqrt{2}$
3. (a) $a=\frac{d v}{d t}=-6 t$.
(b) $s=\int v d t=-t^{3}+12 t+c$

When $t=0, s=0 \Rightarrow 0+c=0 \Leftrightarrow c=0$. Hence, $s=-t^{3}+12 t$
(c) Stationary $\Rightarrow v=0 \Leftrightarrow 3 t^{2}-12=0 \Leftrightarrow t^{2}=4 \Leftrightarrow t=2 \mathrm{sec}$
(d) (i) The displacement after 3 seconds is $s=3^{3}-12 \times 3=-9 m$
(ii) For the distance travelled,

METHOD A: By GDC: $d=\int_{0}^{3}|v| d t=\int_{0}^{3}\left|3 t^{2}-12\right| d t=23 m$
METHOD B: Without GDC: the direction changes at $t=2$.

$$
\begin{aligned}
& \int_{0}^{2} v d t=\int_{0}^{2}\left(3 t^{2}-12\right) d t=\left[t^{3}-12 t\right]_{0}^{2}=(8-24)-0=-16 m \\
& \int_{2}^{3} v d t=\int_{2}^{3}\left(3 t^{2}-12\right) d t=\left[t^{3}-12 t\right]_{2}^{3}=(27-36)-(8-24)=-9+16=7 m
\end{aligned}
$$

Hence, $d=16 m+7 m=23 m$.
(e) Two shaded regions: from 0 to 2 (negative), from 2 to 3 (positive).
4. (a) $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=10-t$ When $t=0, v=10\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(b) The velocity is zero when $\frac{\mathrm{d} s}{\mathrm{~d} t}=0 \Leftrightarrow 10-t=0 \Leftrightarrow t=10$ (secs)
(c) $s=50$ (metres)
5. (a) $S_{\min }=6.05 \quad(\operatorname{accept}(1,6.05))$
(b) $\frac{\mathrm{d} s}{\mathrm{~d} t}=-15 \sin 3 t+2 t$
$a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=-45 \cos 3 t+2$
(c) EITHER

Maximum value of a when $\cos 3 t$ is minimum ie $\cos 3 t=-1$
OR
At maximum $\frac{\mathrm{d} a}{\mathrm{~d} t}=0 \quad(135 \sin 3 t=0)$

$$
t=\frac{\pi}{3} \quad(1.05 \text { also accepted })
$$

6. (a) Evidence of using $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=3 \mathrm{e}^{3 t-2}$

$$
a(1)=3 \mathrm{e} \quad(=8.15)
$$

(b) solve $\mathrm{e}^{3 t-2}=22.3 \Leftrightarrow t=1.70$
(c) using $s=\int v \mathrm{~d} t \int \mathrm{e}^{3 t-2} \mathrm{~d} t=\frac{1}{3}\left[\mathrm{e}^{3 t-2}\right]$

Distance travelled $=\frac{1}{3}\left[\mathrm{e}^{3 t-2}\right]_{0}^{1}=\frac{1}{3}\left(\mathrm{e}^{1}-\mathrm{e}^{-2}\right)\left[=\frac{1}{3}\left(\mathrm{e}-\mathrm{e}^{-2}\right)=0.861\right]$
7. (a) $s=t^{4}-t^{2}+c$
$8=2^{4}-2^{2}+c \Leftrightarrow c=-4$
$s=t^{4}-t^{2}-4$
(b) $a=12 t^{2}-2$,

For $t=1, a=10 \mathrm{~ms}^{-2}$
8. $s=\int v \mathrm{~d} t s=\frac{1}{2} \mathrm{e}^{2 t-1}+c$

Substituting $t=0.5 \quad \frac{1}{2}+c=10 \Rightarrow c=9.5$
$s=\frac{1}{2} \mathrm{e}^{2 t-1}+9.5$
Substituting $t=1 \quad s=\frac{1}{2} \mathrm{e}+9.5(=10.9$ to $3 s$.f. $)$
9. $s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+c$

Substituting $t=0, s=2 \Rightarrow c=2.5$
$s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+2.5$
10. $s=\int\left(6 \mathrm{e}^{3 x}+4\right) \mathrm{d} x=2 \mathrm{e}^{3 t}+4 t+C$
substituting $t=0,7=2+C \Rightarrow C=5$
$s=2 \mathrm{e}^{3 t}+4 t+5$
11. (a) $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-10$
(b) $s=\int v d t=50 t-5 t^{2}+c$

$$
\begin{aligned}
& 40=50(0)-5(0)+c \Rightarrow c=40 \\
& s=50 t-5 t^{2}+40
\end{aligned}
$$

12. (a)

(b) (i) $d=d=\int_{0}^{9} v \mathrm{~d} t=\int_{0}^{9}(15 \sqrt{t}-3 t) \mathrm{d} t$,
(ii) $\quad d=148.5$ (m) (or 149 to 3 sf)
13. $v=\int\left(\frac{1}{t}+3 \sin 2 t\right) \mathrm{d} t=\ln t-\frac{3}{2} \cos 2 t+c$ substituting $(1,0): 0=\ln 1-\frac{3}{2} \cos 2+c \Leftrightarrow c=-0.624 \quad$ (or $\frac{3}{2} \cos 2$) $v=\ln t-\frac{3}{2} \cos 2 t-0.624\left(=\ln t-\frac{3}{2} \cos 2 t+\frac{3}{2} \cos 2\right.$ $v(5)=2.24 \quad$ (or exact answer $\ln 5-1.5 \cos 10+1.5 \cos 2)$
14. (a)

Function	Graph
displacement	A
acceleration	B

(b) $t=3$
15. (a) $s=25 t-\frac{4}{3} t^{3}+c$

Substituting $s=10$ and $t=3: 10=25 \times 3-\frac{4}{3}(3)^{3}+c \Leftrightarrow \quad c=-29$ $s=25 t-\frac{4}{3} t^{3}-29$
(b) METHOD 1
s is a maximum when $v=\frac{\mathrm{d} \boldsymbol{s}}{\mathrm{d} \boldsymbol{t}}=0$
$25-4 t^{2}=0 \Rightarrow t^{2}=\frac{25}{4} \Rightarrow t=\frac{5}{2}$

METHOD 2

By GDC graph: max when $t=2.5$
(c) $25 t-\frac{4}{3} t^{3}-29>0 \quad$ (accept equation) $m=1.27, n=3.55$
16. (a) $s=50 t=10 t^{2}+1000$
$v=\frac{\mathrm{d} s}{\mathrm{~d} t}=50-20 t$
(b) Displacement is max when $v=0$,
ie when $t=\frac{5}{2}$.
Substituting $t=\frac{5}{2}, s=50 \times \frac{5}{2}-10 \times\left(\frac{5}{2}\right)^{2}+1000$
$s=1062.5 \mathrm{~m}$ (or directly by GDC graph, maximum)
(c) $\quad a=-20 \mathrm{~ms}^{-2}$
17. Given $s=40 t+0.5 a t^{2}$, then the maximum height is reached when $\frac{\mathrm{d} s}{\mathrm{~d} t}=0$
at $+40=0$
$a=\frac{-40}{25}=-1.6$ (units not required)
18. $s=\int\left(3 t^{2}-4 t+2\right) d t=t^{3}-2 t^{2}+2 t+c$
$s(0)=-3 \Rightarrow c=-3$
$s=t^{3}-2 t^{2}+2 t-3$
$s=0 \Leftrightarrow t^{3}-2 t^{2}+2 t-3=0 \Leftrightarrow t=1.81(\mathrm{sec})$
19. $a(t)=-\frac{1}{20} t+2 \quad v(t)=-\frac{1}{40} t^{2}+2 t+c$
$v=0$ when $t=0$, and so $c=0$
Thus, $v(t)=-\frac{1}{40} t^{2}+2 t=-\frac{1}{40} t(t-80)$.
Since $v(t) \geq 0$ for $0 \leq t \leq 80$, the distance travelled $=\int_{0}^{60} v(t) \mathrm{d} t$

$$
=\left[-\frac{1}{120} t^{3}+t^{2}\right]_{0}^{60}=60^{2}\left(1-\frac{1}{2}\right)=1800 \mathrm{~m} .
$$

20. (a) $s=\int_{0}^{2}\left(6 t^{2}-6 t\right) d t=\left[2 t^{3}-3 t^{2}\right]_{0}^{2}=16-12=4 \mathrm{~m}$
(b) Distance travelled $=\int_{0}^{2}\left|6 t^{2}-6 t\right| d t=6 \mathrm{~m}$

OR analytically

$$
v(t)=6 t^{2}-6 t=6 t(t-1)
$$

Distance travelled $=-\int_{0}^{1}\left(6 t^{2}-6 t\right) \mathrm{d} t+\int_{1}^{2}\left(6 t^{2}-6 t\right) \mathrm{d} t$

$$
=-\left[2 t^{3}-3 t^{2}\right]_{0}^{1}+\left[2 t^{3}-3 t^{2}\right]_{1}^{2}=-(-1)+5=6 \mathrm{~m} .
$$

(c) There is a change in direction at $t=2: 1 \mathrm{~m}$ backwards, 5 m forward, hence

$$
\text { Displacement }=4 \mathrm{~m} \quad \text { Distance travelled }=6 \mathrm{~m}
$$

21. Total distance $=k \int_{0}^{a} \mathrm{e}^{-t / 2} \mathrm{~d} t=-2 k\left[\mathrm{e}^{-t / 2}\right]_{0}^{a}=-2 k\left(\mathrm{e}^{-a / 2}-1\right)$ metres
22. (a) Distance $=\int_{0}^{1} \frac{\mathrm{~d} t}{2+t^{2}}=0.435$
(b) Acceleration $=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{-2 t}{\left(2+t^{2}\right)^{2}}$
23. (a) $v=0 \Rightarrow t=\pi$ (first time)
(b) (i) Displacement $=\int_{0}^{2 \pi} e^{-\sqrt{t}} \sin t d t=0.387$
(ii) Distance travelled $=\int_{0}^{2 \pi}\left|e^{-\sqrt{t}} \sin t\right| d t=0.852$

OR more analytically $\int_{0}^{\pi} \mathrm{e}^{-\sqrt{t}} \sin t \mathrm{~d} t+\left|\int_{\pi}^{2 \pi} \mathrm{e}^{-\sqrt{t}} \sin t \mathrm{~d} t\right|=0.620+0.232=0.852$
24. (a) $v(t)=t \sin \left(\frac{\pi}{3} t\right)=0$ when $t=0, t=3$ or $t=6$
(b) (i) The required distance, $d=\int_{0}^{6}\left|t \sin \left(\frac{\pi}{3} t\right)\right| \mathrm{d} t . \quad$ (ii) $d=11.5 \mathrm{~m}$.

OR more analytically
(i) The required distance, $d=\int_{0}^{3} t \sin \left(\frac{\pi}{3} t\right) \mathrm{d} t-\int_{3}^{6} t \sin \left(\frac{\pi}{3} t\right) \mathrm{d} t$
(ii) $d=2.865+8.594=11.459=11.5 \mathrm{~m}$.
25. (a) $a=10 \mathrm{~ms}^{-2}$
(b) $a=100 s$
26. (a) $a=2 t+10 e^{t}$
(b) $a=\left(2 s+10 e^{s}\right) v=\left(2 s+10 e^{s}\right)\left(s^{2}+10 e^{s}\right)$
27. Given $v=\frac{(3 s+2)}{(2 s-1)}$ then $a=v \frac{\mathrm{~d} v}{\mathrm{~d} s}=\frac{3(2 s-1)-2(3 s+2)}{(2 s-1)^{2}} \times \frac{(3 s+2)}{(2 s-1)} \Leftrightarrow a=\frac{-7(3 s+2)}{(2 s-1)^{3}}$ therefore when $s=2, a=\frac{-56}{27}$

B. Paper 2 questions (LONG)

28. (a) $a=-8 e^{2 t}$,

At $t=\ln 3 a=-8 e^{2 \ln 3}=-72 \mathrm{~ms}^{-2}$
(b) $s=\int 16-4 e^{2 t} d t=16 t-2 e^{2 t}+c$
$s(0)=0 \Rightarrow \mathrm{c}=2$. Therefore $s=16 t-2 e^{2 t}+2$
(c) $v=0 \Leftrightarrow 16-4 e^{2 t}=0 \Leftrightarrow t=\ln 2$
(d) $s=32 \ln 2-30 \mathrm{~m}$,
distance travelled $=\int_{0}^{\ln 4}\left|16-4 e^{2 t}\right| d t=18 \mathrm{~m}$

$$
\mathbf{O R}=\int_{0}^{\ln 2}\left(16-4 e^{2 t}\right) d t-\int_{\ln 2}^{\ln 4}\left(16-4 e^{2 t}\right) d t=18 \mathrm{~m}
$$

29. (a) $\quad v=\frac{1}{4} \cos \left(\frac{t}{4}\right) \quad a=-\frac{1}{16} \sin \left(\frac{t}{4}\right)$
(b) $s_{\text {max }}=1$
(c) $s=0 \quad$ at $t=0,4 \pi, 8 \pi, \ldots \quad$ (i.e. $t=4 k \pi, k \in Z^{+}$)
(d) $\pm \frac{1}{4} \mathrm{~ms}^{-1}$
(e) $\quad v=0 \quad$ at $t=2 \pi, 6 \pi, 10 \pi, \ldots \quad$ (i.e. $t=2 \pi+4 k \pi, k \in Z^{+}$)
(f) $\pm \frac{1}{16} \mathrm{~ms}^{-2}$
30. (a) (i) $v(0)=50-50 \mathrm{e}^{0}=0$
(ii) $v(10)=50-50 \mathrm{e}^{-2}=43.2$
(b) (i) $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-50\left(-0.2 \mathrm{e}^{-0.2 t}\right)=10 \mathrm{e}^{-0.2 t} \quad$ (ii) $a(0)=10 \mathrm{e}^{0}=10$
(c) (i) $t \rightarrow \infty \Rightarrow v \rightarrow 50$
(ii) $t \rightarrow \infty \Rightarrow a \rightarrow 0$
(iii) when $a=0, v$ is constant at 50
(d) (i) $y=\int v \mathrm{~d} t=50 t-\frac{\mathrm{e}^{-0.2 t}}{-0.2}+k=50 t+250 \mathrm{e}^{-0.2 t}+k$
(ii) $0=50(0)+250 \mathrm{e}^{0}+k=250+k \Rightarrow k=-250$
(iii) Solve $250=50 t+250 \mathrm{e}^{-0.2 t}-250 \Rightarrow t=9.207 \mathrm{~s}$
31. (a) $\frac{\mathrm{d} s}{\mathrm{~d} t}=30-a t=>s=30 t-a \frac{t^{2}}{2}+C$
$t=0=>s=30(0)-a \frac{\left(0^{2}\right)}{2}+C=0+C=>C=0$. Thus $s=30 t-\frac{1}{2} a t^{2}$
(b) (i) $\mathrm{vel}=30-5(0)=30 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Train will stop when $0=30-5 t=>t=6$

Distance travelled $=30 t-\frac{1}{2} a t^{2}=30(6)-\frac{1}{2}(5)\left(6^{2}\right)=90 \mathrm{~m}$ $90<200=>$ train stops before station.
(c) (i) $0=30-a t \Rightarrow t=\frac{30}{a}$
(ii) $30\left(\frac{30}{a}\right)-\frac{1}{2}(a)\left(\frac{30}{a}\right)^{2}=200 \Rightarrow \frac{900}{a}-\frac{450}{a}=\frac{450}{a}=200 \Rightarrow a=\frac{9}{4}=2.25 \mathrm{~ms}^{-2}$
32. (a) When $t=0, h=2+20 \times 0-5 \times 0^{2}=2 \Rightarrow h=2$
(b) When $t=1, h=2+20 \times 1-5 \times 1^{2}=17$
(c) (i) $h=17 \Rightarrow 17=2+20 t-5 t^{2}$
(ii) $5 t^{2}-20 t+15=0 \Leftrightarrow 5\left(t^{2}-4 t+3\right)=0 \Leftrightarrow t=3$ or 1
(d) (i) $h=2+20 t-5 t^{2} \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=0+20-10 t=20-10 t$
(ii) $t=0 \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=20-10 \times 0=20$
(iii) $\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Leftrightarrow 20-10 t=0 \Leftrightarrow t=2$
(iv) $t=2 \Rightarrow h=2+20 \times 2-5 \times 2^{2}=22 \Rightarrow h=22$
33. (a) (i) $t=0 s=800$
$t=5 s=800+500-100=1200$
distance in first 5 seconds $=1200-800=400 \mathrm{~m}$
(ii) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=100-8 t$

At $t=5$, velocity $=100-40=60 \mathrm{~m} \mathrm{~s}^{-1}$
(b) (i) Velocity $=36 \mathrm{~m} \mathrm{~s}^{-1} \Rightarrow 100-8 t=36$ $t=8$ seconds after touchdown.
(ii) When $t=8, s=800+100(8)-4(8)^{2}=800+800-256=1344 \mathrm{~m}$
(c) If it touches down at P, it has $2000-1344=656 \mathrm{~m}$ to stop.

To come to rest, $100-8 t=0 \Rightarrow t=12.5 \mathrm{~s}$
Distance covered in $12.5 s=100(12.5)-4(12.5)^{2}=625$
Since $625<656$, it can stop safely.
34. (a) (i) At release(P), $t=0, s=48+10 \cos 0=58 \mathrm{~cm}$ below ceiling
(ii) $58=48+10 \cos 2 \pi t \Leftrightarrow \cos 2 \pi t=1 t=1 \mathrm{sec}$
(b) (i) $\frac{\mathrm{d} s}{\mathrm{~d} t}=-20 \pi \sin 2 \pi t$
(ii) $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=-20 \pi \sin 2 \pi t=0 \Leftrightarrow \sin 2 \pi t=0 \Leftrightarrow t=0, \frac{1}{2} \ldots$ (at least 2 values)

$$
\begin{aligned}
& s=48+10 \cos 0 \text { or } s=48+10 \cos \pi \\
& =58 \mathrm{~cm}(\text { at } \mathrm{P}) \quad=38 \mathrm{~cm}(20 \mathrm{~cm} \text { above } \mathrm{P})
\end{aligned}
$$

Note: May be deduced from recognizing that amplitude is 10 .
(c) $48+10 \cos 2 \pi t=60+15 \cos 4 \pi t \Leftrightarrow t=0.162$ secs
(d) 12 times
35. (a) $t=2 \Rightarrow h=50-5\left(2^{2}\right)=50-20=30$ OR $h=90-40(2)+5\left(2^{2}\right)=30$
(b)

(c) (i) $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(50-5 t^{2}\right)=-10 t$
(ii) $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(90-40 t+5 t^{2}\right)=-40+10 t$
(d) When $t=2$ (i) $\frac{\mathrm{d} h}{\mathrm{~d} t}=-10(2)=-20$ or (ii) $\frac{\mathrm{d} h}{\mathrm{~d} t}=-40+10 \times 2=-20$
(e) $\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow-10 t=0(0 \leq t \leq 2) \quad$ or $\quad-40+10 t=0(2 \leq t \leq 5)$

$$
t=0 \quad t=4
$$

(f) When $t=4, h=90-40(4)+5\left(4^{2}\right)=90-160+80=10$
36. (a) $\operatorname{arc} \mathrm{AB}=\boldsymbol{r} \theta=5 \pi / 2=7.85$ (m)
(b) Area of sector AOB $A=\frac{1}{2} r^{2} \theta=58.9\left(\mathrm{~m}^{2}\right)$
(c) METHOD 1

angle $=\frac{\pi}{6}\left(30^{\circ}\right)$
height $=15+15 \sin \frac{\pi}{6}=22.5(\mathrm{~m})$

METHOD 2

angle $=\frac{\pi}{3}\left(60^{\circ}\right)$
height $=15+15 \cos \frac{\pi}{3}=22.5(\mathrm{~m})$
(d)
(i) $\quad h\left(\frac{\pi}{4}\right)=15-15 \cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right)=25.6(\mathrm{~m})$
(ii) $\quad h(0)=15-15 \cos \left(0+\frac{\pi}{4}\right)=4.39(\mathrm{~m})$
(iii) METHOD 1

Highest point when $h=30$

$$
30=15-15 \cos \left(2 t+\frac{\pi}{4}\right) \Leftrightarrow \cos \left(2 t+\frac{\pi}{4}\right)=-1 \Leftrightarrow t=1.18\left(\text { accept } \frac{3 \pi}{8}\right)
$$

METHOD 2

Sketch of graph of $h, t=1.18$

METHOD 3

$h^{\prime}(t)=0 \Leftrightarrow \sin \left(2 t+\frac{\pi}{4}\right)=0 \Leftrightarrow t=1.18\left(\operatorname{accept} \frac{3 \pi}{8}\right)$
(e) $\quad h^{\prime}(t)=30 \sin \left(2 t+\frac{\pi}{4}\right)$
(f) (i)

(ii) METHOD 1

Maximum on graph of h^{\prime}
$t=0.393$

METHOD 2

Minimum on graph of h^{\prime}
$t=1.96$
METHOD 3
Solving $h^{\prime \prime}(\mathrm{t})=0$
One or both correct answers: $t=0.393, t=1.96$
37. (a) $v=1$
(b) (i) $\frac{\mathrm{d} v}{\mathrm{~d} t}=0 \Leftrightarrow 2-2 \sin 2 t=0 \Leftrightarrow \sin 2 t=1 \Leftrightarrow 2 t=\frac{\pi}{2} \Leftrightarrow t=\frac{\pi}{4}$

$$
k=\frac{\pi}{4}
$$

(ii) $\quad v=2\left(\frac{\pi}{4}\right)+\cos \left(\frac{2 \pi}{4}\right)=\frac{\pi}{2}$
(c)

Note

y-intercept at $(0,1)$,
zero gradient at $\mathrm{t}=\frac{\pi}{4}$, concave down to the left of $\frac{\pi}{4}$ and concave up to the right of $\frac{\pi}{4}$
(d) (i) $d=\int_{0}^{1}(2 t+\cos 2 t) \mathrm{d} t, \quad$ OR $\left[t^{2}+\frac{\sin 2 t}{2}\right]_{0}^{1}, 1+\frac{\sin 2}{2}$
(ii)

Note: The line at $t=1$ needs to be clearly after $t=\frac{\pi}{4}$.
38. (a) $f(x)=-10(x+4)(x-6)$
(b) $x=(-4+6) / 2=1$
$y=-10(1+4)(1-6)=250$ vertex $(1,250)$
$f(x)=-10(x-1)^{2}+250$
(c) simplify $-10(x+4)(x-6)=-10\left(x^{2}-6 x+4 x-24\right)=240+20 x-10 x^{2}$

$$
\mathbf{O R}-10(x-1)^{2}+250=-10\left(x^{2}-2 x+1\right)+250=240+20 x-10 x^{2}
$$

(d) (i) vertex of parabola, $v^{\prime}(t)=0$

$$
t=1
$$

(ii) $\quad a(t)=v^{\prime}(t)=20-20 t$
speed is zero $\Rightarrow t=6, a(6)=-100\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
39. (a) (i) $s=\int(40-a t) \mathrm{d} t=40 t-\frac{1}{2} a t^{2}+c$
substituting $s=100$ when $t=0(c=100)$
$s=40 t-\frac{1}{2} a t^{2}+100$
(ii) $s=40 t-\frac{1}{2} a t^{2}$
(b) (i) stops at station, so $v=0$ when $t=\frac{40}{a}$ (seconds)
(ii) substituting $t=\frac{40}{a}$ to the formula for s from (a) (ii)

$$
\begin{aligned}
& 40 \times \frac{40}{a}-\frac{1}{2} a \times \frac{40^{2}}{a^{2}}=500 \Leftrightarrow \frac{1600}{a}-\frac{800}{a}=500 \Leftrightarrow \frac{800}{a}=500 \\
& \Leftrightarrow a=\frac{8}{5}
\end{aligned}
$$

(c) METHOD 1
$v=40-4 t$, stops when $v=0 \Leftrightarrow 40-4 t=0 \Leftrightarrow t=10$
OR from (b) $t=\frac{40}{4}=10$
Then
$s=40 \times 10-\frac{1}{2} \times 4 \times 10^{2}=200$
since $200<500$ train stops before the station

METHOD 2

a is deceleration
$4>\frac{8}{5}$
so stops in shorter time, so less distance travelled, so stops before station
40. (a) $v=\int a d t=\int-\frac{1}{(1+t)^{2}} d t=\frac{1}{1+t}+c$

When $t=1, v=8 \Rightarrow \frac{1}{2}+c=8 \Rightarrow c=\frac{15}{2}$
Hence, $v=\frac{1}{1+t}+\frac{15}{2}$
When $t=3, v=\frac{1}{4}+\frac{15}{2}=\frac{31}{4} \mathrm{~m} \mathrm{~s}^{-1}$
(b) When $t \rightarrow \infty, v \rightarrow \frac{15}{2} \mathrm{~ms}^{-1}$
(c) $s=\int v d t=\int\left(\frac{1}{1+t}+\frac{15}{2}\right) d t=\left[\ln (1+t)+\frac{15}{2} t\right]_{1}^{3}$

$$
=\ln 4+\frac{45}{2}-\ln 2-\frac{15}{2}=\ln 2+15 \mathrm{~m}
$$

41.

(a) maximum when $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ (or any correct method)
$t=3$
$t=3, \frac{\mathrm{~d}^{2} v_{t}}{\mathrm{~d} t^{2}}=-1 \Rightarrow$ maximum \Rightarrow maximum $v_{A}=6\left(\mathrm{~ms}^{-1}\right)$
(b) Using acceleration $=\frac{\mathrm{d} v}{\mathrm{~d} t}$

$$
=\frac{1}{5} \mathrm{e}^{02 t}
$$

when $t=4, a=0.445\left(\mathrm{~ms}^{-2}\right)$
(c) using $s_{A}=\int v_{A} \mathrm{~d} t$ or $s_{B}=\int v_{B} \mathrm{~d} t$
$s_{A}=-\frac{1}{6} t^{3}+\frac{3}{2} t^{2}+\frac{3}{2} t+c$
when $t=0, s_{A}=0 \Rightarrow c=0$
$s_{B}=\int \mathrm{e}^{02 z} \mathrm{~d} t=5 \mathrm{e}^{02 \lambda}+d$
when $t=0, s_{B}=5 \Rightarrow d=0$
$s_{A}=-\frac{1}{6} t^{3}+\frac{3}{2} t^{2}+\frac{3}{2} t$
$s_{B}=5 \mathrm{e}^{02 t}$
(d) (i)

(ii) $\quad t=1.95$ and $t=7.81$

